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The stability of the flow of a viscous incompressible fluid in a two- 
dimensional channel with parallel walls has been studied in detail in 
the case of symmetric velocity profiles in Il.3 1. There are possible 
flow patterns, however, the velocity profiles of which are not symmetric. 
Such flow patterns arise, for example, in channels with permeable walls, 
through which the fluid moves with different velocities [3 1 L 

This paper analyses the stability of almost parallel flows with asym- 
metric velocity profiles both in two-dimensional and annular channels, 
using the method developed in [ 1 I, The difficulty of the problem lies 
in the fact that the asymmetric velocity profile does not allow one to 
consider just symmetric or antisymmetric perturbations. In the analysis 
we use the results of mathematical papers on the behavior of asymptotic 
solutions of the Orr-gommerfeld equation [ 4.3 16 

1. ‘Ibe problem of the stability of parallel flows reduces to the solu- 
tion of the Orr-Somnerfeld equation for the amplitude of the stream func- 

tion of the perturbation flow of $ 

(D - CL~)~ cp = iaR [(w - c)(P - a2) - Pw] cp (UB = $) (1.1) 

Here y is the dimensionless coordinate measured along the normal to 
the wall of the channel, a = 2nH/A is the wave number, A is the wave- 

length of the perturbation, and H is the width of the channel; R = UH/v 
is the Reynolds number of the stream, corresponding to the maximum velo- 

city U in the given section of the channel ;v is the kinematic viscosity 

of the fluid; IO = @is the dimensionless velocity profile; c is the 

dimensionless wave velocity, which we shall assume to be a real number, 

considering only neutrally stable oscillations. 
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Satisfying the boundary conditions 

Y 

cp=rp’=O when y=yland y=y2 (1.2) yz 

we obtain the equation for the eigenvalues 
W(Y) 
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912 cpza (p32 942 
~ 

-0 
(pll‘ (pa 931' (P41' - 

(1.3) q 
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Fig. 1. 

where &l = &(yl) (k = 1, 2, 3, 4; 2 = 1, 2) are the values of the 
linearly independent solutions of Equation (1.1) at the points y1 and y2. 

For large values of the parameter aR two solutions of Equation (l.l), 
which we shall denote by & and $, may with sufficient accuracy be taken 

as the solutions of the degenerate equation 

(W-c)(cp"-IX%+?)-ww"cp = 0 (1.4) 

obtained from (1.1) as aR + W. 'lhe other two solutions, $ and qS4, 
essentially depend on the forces of viscosity, and their asymptotic ex- 
pressions have-the form 

(pa = A(y)e-Y(g). qa = B (y) ey(u) (Y(y) = \ ‘I/iuR (w - c)dy) (I.51 
UC1 

where the functions A(y) and B(y) vary weakly in comparison with the ex- 
ponential factors, whilst yC1 is the coordinate of the critical point, 
lying near yl. Regarding the function w(y) we shall assume that it in- 
creases monotonically (Fig. 1) from the point y1 to y = 0, whilst there- 
after it decreases monotonically to the point y2; tp(y,) = w(yf) = 0 and 

therefore the equation w(y) = c has two real roots, yC1 and yc2. Ek- 
pressions (1.5) will b e used to simplify the equation for the eigenvalues 
(1.3). We shall use the notation 

P =T’ ~iiaR(w-cc)@, 4 = A (yz), BI = B(yl) (1s 1,2) (1.6) 
c 
Yl 

Then 
rp32 AZ e-P 

(P31=Al ' 

qJ31' 
- = - Jf%R(--c) + $l 
cp31 

VT_ BI _-_e -IJ 

(P42 B2 
(1.7) 
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--- 

To assess the order of magnitude of these ratios we notice that the 
real part of the integral Re P = O(qaR). Dividing the third column of 

the determinant (1.3) by $31, and the fourth by $42 and assuming aR SO 

large that all the ratios (1.7), apart from c,$~'&~~ and +~2'/+~2, are 
very small, we obtain 

Here 

f1= / 
VI1 (P12 

qJ21 cF22 

lhese quant ties are composed simply of the solutions of the degener- 
ate equation (1.4). 

In the calculation of the eigenvalues from Equation (1.8) it is 
necessary to be more accurate in expressing the ratios $S1/+31' and 

'751&42' than in Formulas (1.7). The expressions of the functions r& and 
+h close to the walls are obtained by expanding the solution of Equation 
(1.1) as a series 4 = x(O) f 6 $1) . . . in powers of the small parameter 

E = (aRP'3, and substituting the symbol '1 = (y - Y,)/c, where yC is 
the coordinate of the corresponding critical point. The zero-order terms 
of the expansion are the solutions of Stokes' equation 

(1.10) 

where roe ' is the slope of the velocity profile at the critical point. 

In [4,51 it is shown that the asymptotic solutions of the Orr-Sooner- 

feld equation remain regular in a complex domain of y containing the points 

y1 and y2. if the real part of the integral Y(y) increases monotonically 

as y varies from y1 to y2. Accordingly Re Y(y) z 0 when y; Y,l, and by 

virtue of (1.5) the solution $3 must decrease as y approaches yzr whilst 

$4r on the other hand, increases. For approximations to the solutions 
3 and +, we therefore take those solutions of Equation (1.10) which vary 
in the stated manner. These solutions are 

(0) 
(P3==Xl , f-P)4 = x,(O) 

where 
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Here H,,,(1’ is the Haukel function of the first kind. ‘Ihen we obtain 

xII(“’ = (yz - y,z) F(q), 
%I,“” 

21 = - aozqz, Q = v (1= 13 (1.12) 

Tables of the Tietjens function F(z) are to be found in [ 1,6 I. 

The solutions qbl and & of the degenerate equation are found by ex- 
panding them in power series of the wave number a 

(1.14) 

~l=(W-c)~ @&TX (Y), h,, (Y) = 5 a-l ~&L~ (Y) dy &/, ho = 1 
n=o 0 0 

(v4 = (ZL - c) $ 

Y Y 

~2nhl+l (y), bl+, (9) = a-l 
s I 

1 h2n_1 (Y) $4 4 (1.15) 
?a=0 0 0 

a = (20 - cy, /iI = 5 U-I dy 

U 

In these expressions the integration is carried out in the complex 
plane of y in the neighborhood of the critical points according to the 
following rule: when wc’ > 0 the path of integration falls below, and 
when w ’ < 0 it falls above the critical point (Fig. 2). This follows 
imnediitely from the stated condition on the monotonic growth of Re Y(y). 

Let us introduce yet other expressions for the derivatives &‘.and 

$2: 

i @%n+l (Y> 
n=o n=o 

Y 

L,+M = 5 a s u-l L,(y) dy dy, 
0 0 

/z, = 5 a dy 

0 

(1.16) 
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(p2’= wr i aen h-2,+1 (Y) + -&j cPkgn (y) 
7X=0 n=o 

kzn (y) = 1 a P .-I kzn_z (Y)f+ +, 
(1.17) 

li, = 1 
0 t 

In what follows we shall introduce the notation (n = 0, 1, 2, . . . . 
I = 1, 2): 

FE, (?A) = L(z), $mj&(U -K - (0 + 9 (0 (1.19) 
n=o la=0 

L, -_ ff+(l)K_(.2, - H+@)K_(l), L, =H,(l)K+(2L a"fj (Z,K (1) - - fl.20) 
La zz q(z,fp - a2jf_(l)K_W, L, Tr: ff_(OK+(2) - ff_(2)K+W 

?hen we obtain the following expressions for fk: 

Let us now transform Equation (1.8), setting 

y,: - &fcl = - $V + W (l= 1,2) (1.22) 

where the quantities Xl are determined by the given velocity profile and 
the value of c. (For small c these quantities are generally small in 
comparison with unity). 

Then in place of (1.12) we can write 

If we now set QI = l/(1 - Fz), then the equation for the eigenvalues 
(1.8) as a result of the relations (1.21) to (1.23) takes the form 

c2w1’w~‘LI-+ czul’L~(B>,-l)-cw,‘L3(~~ - 1)+c?L,(@,--1) (cl>,-l)=c) (1.24) 
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2. Let us estimate 
in L,. For this it is 

quantities H (l), H (I), 
+ 

K 
+ 

(l) and K (‘) appearing 

necessary first of all to estimate the integrals 

(2.1) 

x jl y Y 
,% ;! 

1309 

ff2,w = 5” u-l[u[ . . . \a(dy)2n, H2n+l(l)= \ up-l) *** pQc~Y)~l’-‘-l 
0 0 0 0 0 0 0 

KznW =p u~u-l~...ju-l(dy)2~, h’,,,,c’,=~ u-l~u~...iu-l(~y,‘“” 
0 0 0 0 0 0 0 0 

Let us define the path of integration. We shall skirt the critical 

points with semi-circles C, with radii rl = j~~-y,~ 1, disposed respect- 

ively in the lower and upper half-planes of the complex plane of y (Fig. 

2), whilst the remainder of the path is taken along the real axis. Let 

yl" be the points of intersection of the real axis with the semicircles 

Cl. For estimates of the integrals it is sufficient to consider one of 

the integrals (0, y,). Let the complex variable y -y (t) on the path of 

integration be a function of the real parameter t, the length of arc 

along the path of integration, starting from the origin of coordinates. 

'Ihen 

=- Y when YI’<Y<~ 

t = - ylo - FlCp when y-yYcl=r~ei$ ---n<q<O (dy Jdt = - ie’? 

Let us estimate the moduli of the integrals. Evidently 

Ih;,(l)(G~,n,iin-',i... i,K,(dt)2" (n = 1,2,. 

since 
0 0 0 0 

1, t1 = -y1O+nr,, rl = 2 (1 i A,) 

Moreover 

.I (2.2) 

(2.3) 

The last relation is obvious when O<t<9-, = -yIo, since in this 

interval the quantity la-‘1 tk is increasing. If, however, t),J+,, then 

the following relation holds: 

l;tkdt = (2.4) 

which is obtained by expanding the integrand in the neighborhood of the 

critical point 
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if11 =* I 1 - $ rleiv + . . . I (t > 81) 

1 a-1 / = I 
Wclr2 (L,1- v I 1 - ‘3 (&I- t) + . . . I (t < 81, t,1 =-Ycl) 

From the relation (2.2) by virtue of (2.3) it follows that 

(2.5) 

In just the same way we obtain 

(2.6) 

Since 1 aI < 1 and J’ 
0 

1 a1 dt < 1, then for &a+ 1(1) and Hz,(‘) we have 

Let us estimate the imaginary parts of the integrals. ‘Ihe expressions 

in the integrands are complex only on C,, so that, for example 

-7-t 

Im Kz,(l) = Im s irlaeiq Ic,,_, dq~ (2.9) 
0 

where for k,,_ 1 we can write 

&n-l = k,,_, (W + s irlaW1eiQ k m-2 cp d (2.10) 
0 

and Q,_J% ) are real quantities, the moduli of which are less than 

the moduli I&,_ II . According to Formula (2.10), it follows from (2.9) 

that 

and likewise 

Similarly 
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where 

(2.15) 

Expanding the expressions a and -1 a in series, it is not difficult to 

obtain 

ImJ =(I 1 f ImI =nwz 1 
J+l WC1 

IS 7 Im J, = lmI, = - or, $$- + O(T,“) (2.17) 
c 

Moreover, it is clear that 

jJ31=O(rlZ), iJjl<O(l), iIji-<O(rlm2) (j = 1,2, . .I (2.18) 

From Formulas (2.17) and the estimates (2.18) we obtain the following 

estimates of the series (2.11) - (2.14) as regards their main terms: 

i ImK,,(l) / = 0(r13), j Im KSln)+l 1 = 0 (1) 

1 ImH,dl) ( = 0 (I), J ImH:1,)+,) = O(r13) 
(2.19) 

In what follows we shall need for approximate calculations the formula 

H,(l) = K,(l)H,(l) + 0 (In rJ + i0 (r13) (2.20) 

which can be obtained, after estimating the modulus and the imaginary 

part of the integral 

1/l Y 
H,(l) - K,(l)H,(') = ' u-1 * 

s I 
a&J dy 

0 YI 

by a method similar to that followed above. 

‘lhe results which we have obtained may be used for the simplification 

of the equation for the eigenvalues (1.24); we retain in it only the 

terms of a given order of magnitude. Let us consider the simplest case 

of all, when the real part of Equation (1.24) is calculated to an 

accuracy O(rr), and the imaginary part to 0(rr21. Moreover, here we shall 
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assume that. a2 = O(Fl), whilst @= O(1) + iO(rl), as in the case of the 
syntnetrical velocity profile C 2 1. 

‘Iken to the given accuracy we set 

Moreover, the real and imaginary parts of the integral K,(Z) are 

(2.22) 

Using these expressions for the calculation of the quantities Lk, 
from the real and imaginary parts of Equation (1.24) respectively, we 

finally obtain 

where H,, = H,, (2) - H,,,(l), Z, = @li + c~l’Kli(‘), @l,. and @li are the 

real and imaginary parts of the functions @I( 1 = 1, 2). In the case of 
the symmetrical velocity profile (w2’ = - zul’b a2 = al) these formulas 
reduce to the formulas presented in 12 1 

(2.24) 

3. As an example of the calculation of the stability of a flow with 
asymmetric velocity profile in a channel, let us consider the flow 
(Fig. 1) 

w = cos -;- +- (0 > y > y1) 

(I/l-!- y2= 1) (3.1) 

w = COS4yF (0 d y < ya) 

Such a flow is formed by the inflow of fluid into a channel through 

permeable walls with constant velocities uol and uo2 (uo1/uo2 = - y2/y1) 
under the condition that the quantities vO1 H/v and vo21f/v are large com- 
pared with unity. The arguments of the T.ietjens function are in this case 

Here for the sake of simplicity it is assumed that the slope of the 
velocity profile at the critical point is equal to the slope at the cor- 
responding wall of the channel, wCl’.= mI’. (i.e. A, = 0, or C* << 1). 
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From Equations (2. 23) it follows that 

3% = ne 
YlQlP - y2QZr 

YIQ~,Y~Q~~ 
(3.3) 2.18 

The system of equations (3.2) - (3.3) de- 
termines the neutral curve in the plane of 
the parameters a, R. Great practical interest 10’ 
attaches to the calculation of the critical 
Reynolds number R*, for which the first onset 
of instability occurs in the flow. An esti- 5.12 

mate of the quantity R* can be obtained with- 
out constructing the whole of the neutral 
curve, provided that in accordance with (3.2) a 

1 3 5 7 
it is assumed approximately that R attains a 
minimum when the quantity c. considered as a 

Fig. 3. 

function of Z, is a maximum. 

For the symmetric profile (- yI = y2 = l/2) such a calculation gives 

R. = 2150. If, however, yI = - 0.4, then R. = 2900. 

Finally, let us consider the limiting case yI + 0. As follows from the 

properties of the Tietjens function, Qi(z) and @r(z) tend to zero as 
z + 0. Then as yI + 0 we have, for c = cmaX 

and 

nc2 = Qi$ = 0.58, 
- JZCC 

z1 = 3.21, a2 = __ 
Y~YzQ~,. ’ 

QD,, = 1.50 (3.4) 

(3.5) 

For example, Rt = 27400 when yI = - l/9, i.e. the asymmetric flow of 
the type considered is strongly stabilized. 

The conclusion as to the stabilization of the flow with increase of 
the ratio - y*/yI (- yg/yI > 1) has been verified by the author experi- 
mentally. For this purpose a flow was produced in a two-dimensional- 
channel model, with a velocity profile conforming to the relation (3.1). 
Two opposite walls of the channel were made out of net, whilst the other 
two walls and the base of the channel were impermeable. The ratio of the 
velocity of inflow of air through the walls was changed by changing the 
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resistance of the nets. To minimize external disturbances the air was 

exhausted from the channel through a critical section. The beginning of 

the transition to the turbulent regime was observed by the onset of 

oscillations in the stream. For the measured velocity profile, the values 

of R* and y2/y1 were determined. The values of the Reynolds number so 

obtained are shown in Fig. 3. Here is also displayed the theoretical 

curve R (y,/y,) computed from Formula (3.5) (which for values of y1 close 
to - l/z satisfactorily approximates the value of R calculated from 
Formulas (3.33) without the limiting transition y1 : 0). The results of 
the measurements confirm the conclusions obtained from theory. 

4. Ihe method described above can be used without fundamental changes 
to solve the problem of the stability of axial flows in annular channels, 

if it is accepted that the magnitude of the internal radius of the 
annular channel is not small compared with the width of the channel. 

‘Ihe differential equation for the amplitude of the perturbation of 

axisyuvnetric type in this case has the form 

‘p=cp’=O when ~=~~tidr=r~ 

‘Ihe solution of the degenerate equation in 

form as for the plane problem, except for the 

integrals the quantity a must be 

n _ (w - CY 
r 

(w (0) = w (r2) = 0) 

this case has the same 
fact that in all the 

(4.2) 

and the lower limit of integration is ra (rn is the point corresponding 
to the maximum velocity in the channel). ‘Ihe integration is carried out 
in the complex plane of F, skirting the critical points below or above 

according to the sign of wc’ ( > 0 or < 0). The solution of the equation 

for $3 and +4 is just the same as in the plane case (y being everywhere 
replaced by r). 

lhe approximate relations of type (2.23) in this case have the form 

UZHIO wl'r2@2r - w2’r&. 21 w2’ @IT 2 

( > 

rl 
-= -- 

c 4&.r2@2p ’ 
-i-z7 
A2 ~1 mzr r2 

(4.3) 

Here 
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