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The stability of the flow of a viscous incompressible fluid in a two-
dimensional channel with parallel walls has been studied in detail in
the case of symmetric velocity profiles in [1,2 ], There are possible
flow patterns, however, the velocity profiles of which are not symmetric.
Such flow patterns arise, for example, in channels with permeable walls,
through which the fluid moves with different velocities [3].

This paper analyses the stability of almost parallel flows with asym-
metric velocity profiles both in two-dimensional and annular channels,
using the method developed in [1 1. The difficulty of the problem lies
in the fact that the asymmetric velocity profile does not allow one to
consider just symmetric or antisymmetric perturbations. In the analysis
we use the results of mathematical papers on the behavior of asymptotic
solutions of the Orr-Sommerfeld equation [ 4,5 ].

1. The problem of the stability of parallel flows reduces to the solu-
tion of the Orr-Sommerfeld equation for the amplitude of the stream func-
tion of the perturbation flow of ¢

. d2
(D? — 0?2 @ = ioR [(w — c)(D?* — a?) — D*w] @ (D2 = @;) (1.1)

Here y is the dimensionless coordinate measured along the normal to
the wall of the channel, a = 27 H/A is the wave number, A is the wave-
length of the perturbation, and H is the width of the channel; R = UH/v
is the Reynolds number of the stream, corresponding to the maximum velo-
city U in the given section of the channel ; v is the kinematic viscosity
of the fluid; w = u/U is the dimensionless velocity profile; c is the
dimensionless wave velocity, which we shall assume to be a real number,
considering only neutrally stable oscillations.
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Satisfying the boundary conditions
y

¢=¢ =0 when y=y1and y=1 (1.2) %
we obtain the equation for the eigenvalues
0 z
lq)u o wm e —

iprzl (Pzz’ (Paz' (Pm’ -0 ( 1. 3) ,l/'
P’ Pa’ Pn’ Qa
P12’ P22’  Pa’ Qa2
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where ¢; = & (y;) (k=1, 2, 3, 4 1 =1, 2) are the values of the
linearly independent solutions of Equation (1.1) at the points y, and y,.

For large values of the parameter aR two solutions of Equation (1.1),
which we shall denote by ¢, and ¢,, may with sufficient accuracy be taken
as the solutions of the degenerate equation

(w—c)¢" — o’p) —w'p =0 (1.4)

obtained from (1.1) as aR » . The other two solutions, ¢, and ¢,,
essentially depend on the forces of viscosity, and their asymptotic ex-
pressions have the form

®=A@)eTV.  @=B@yew (Y@ =\ ViRw@w—ddy) (15

Yer

where the functions A(y) and B(y) vary weakly in comparison with the ex-
ponential factors, whilst y_; is the coordinate of the critical point,
lying near y,. Regarding the function w(y) we shall assume that it in-
creases monotonically (Fig. 1) from the point y, to y = 0, whilst there-
after it decreases monotonically to the point y,; #(y;) = w(y,) = 0 and
therefore the equation w(y) = ¢ has two real roots, Yoy and y .. Ex-
pressions (1.5) will be used to simplify the equation for the eigenvalues
(1.3). We shall use the notation

Yz
P=\ ViRw—0ody, 4=4@), B=B@y) =12 (16)
W

Then
@z __ A2 p ¥ ViaR(— Ar
P A e P VZOLR( €+ A
P2 _ ViR iﬁﬁ} —P Qa_ B _p 1
o1 —{ VlocB( ¢) A1+ a1 o B,° 1.7)
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To assess the order of magnitude of these ratios we notice that the
real part of the integral Re P = O(v/aR). Dividing the third column of
the determinant (1.3) by ¢;,, and the fourth by ¢,, and assuming aR so
large that all the ratios (1.7), apart from ¢,,"/¢,; and &,,"/¢,,, are
very small, we obtain

Ps1 Qa2 , P P L f =0 18
@31’ @42: f4 @31’ f3 @42! f2 H fl ( » )
Here
Pu Pz P11 P2’ Q' Pz o’ Qr
e ool N - . s = ’ 1 . 9
Iy Qo1 Pazl’ /2 P21 Pa2’ ’ Is P’ P Is P’ P2 (1.9)

These quantities are composed simply of the solutions of the degener-
ate equation (1.4).

In the calculation of the eigenvalues from Equation (1.8) it is
necessary to be more accurate in expressing the ratios ¢;,/¢,,” and
¢‘2/¢42' than in Formulas (1.7). The expressions of the functions ¢, and
¢, close to the walls are obtained by expanding the solution of Equation
(1.1) as a series ¢ = ¥'® + ¢ x{!) ... in powers of the small parameter
e = (aB)y"Y/3 and substituting the symbol 5 = (y - y.)/e, where y, is
the coordinate of the corresponding critical point. The zero-order terms
of the expansion are the solutions of Stokes’ equation

w MO -+ i@V =0 (1.10)

where w,” is the slope of the velocity profile at the ecritical point.

In [4,5] it is shown that the asymptotic solutions of the Orr-Sommer-
feld equation remain regular in a complex domain of y containing the points
y; and y,, if the real part of the integral Y{y) increases monotonically
as y varies from y; to ¥,. Accordingly Re Y(y) z 0 when y Z Y.y, and by
virtue of (1.5) the solution ¢, must decrease as y approaches y,, whilst
¢,, on the other hand, increases. For approximations to the solutions
¢, and ¢, we therefore take those solutions of Fquation (1.10) which vary
in the stated manner. These solutions are

@3 = 1., @y = Y2

where
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Here H) 3!} is the Hankel function of the first kind. Then we obtain

(0)

Pa1 __ Xu Qa2 X22(0)
a1’ Xu(o), ’ Pao’ XH(U)’
Here
(0)
! Yi— Yel
;C by = —ya) Fz), 2= —ogqm, mw= el eyc (=12 (1.12)
u

z

7 —S
_, =
[e]

Tables of the Tietjens function F(z) are to be found in [1,6 ].

8(/}5

| 49: 05 (i€>’“]dcdn/<—z—5 Vi, P[5 " Jdr) (1.13)

The solutions ¢, and ¢, of the degenerate equation are found by ex-
panding them in power series of the wave number a

(1.14)
1{ U
= —0) D o (y), hon (9) = \ @ \ahon o ) dy dy, by =1
‘nOOO Z)I 2
o= —0) D a™hana (i) kama () =\ k() dydy  (1.15)
n=40 0 0

a = (w—c)? k= Sa'l dy
[

In these expressions the integration is carried out in the complex
plane of y in the neighborhood of the critical points according to the
following rule: when w_* > 0 the path of integration falls below, and
when w_* < 0 it falls above the critical point (Fig. 2). This follows
immediately from the stated condition on the monotonic growth of Re Y(y).

Let us introduce yet other expressions for the derivatives ¢,”- and

By

[ee]
O

¢ = w' 21 o
n=o0

y oy Y (1.16)
hona(y) = S a 5 at hop 1 (y) dy dy, = S ady
0 0

0
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? L i < n
@2 =w' 2} a kan () + ——— ) @ han (¥)
n=0 n=0
y oy (117

koo ) =\a\ e bons )y dy, k=1
1] 4]

In what follows we shall introduce the notation (n=20, 1, 2, ...;
1 =1, 2):

[o0] oo

ho(y) = Ha®, D) ?"Hy® = H®, 3 a™H{) = H " (1.18)
n=0 n=0
it o

ko (y1) = K0, 2 i GO U Z 0P K g D=K_O (1.19)
n=>0 n=Q

Ly=HWK_® — H®FK W, Ly =H WK 0— g*H @K ®
L3 e H+(2)K*(1) — alH_WK_ @) Ly = H_(l)K+(2) — H_(2)K+(1)

(1.20)

Then we obtain the following expressions for f,:

lyi &CZ\ J1= L, fa = —wy'cLy -+ Lo,

Y, & .

: A fom —wyely—Ly  {(1.20)
yg ‘ez >

NG )

3

3
I wy’ t wy/ L e
Ja=wiwy'Ly— = L, e Ly - ch4

Fig. 2.

Let us now transform Equation (1.8), setting

Y1 — Yo = ~—£l~.~(i+kz) (=12 (1.22)

where the quantities A; are determined by the given velocity profile and
the value of ¢. (For small ¢ these quantities are generally small in
comparison with unity).

Then in place of (1.12) we can write

{0)
Mo =—wFt (=0 FE) (1.23)
i

If we now set ®; = 1/(1 - F;), then the equation for the eigenvalues
(1.8) as a result of the relations (1.21) to (1.23) takes the form

2wy wy Ly -+ cwy Ly(@y—1)—cwy Ly(D; — 1)+ a2 L (O, —1) (0,—1)=0  (1.24)
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2. Let us estimate quantities H+(l), H D, K;(l) and K;(l) appearing
in L. For this it is necessary first of all to estimate the integrals

Yy ¥y Uy oy ¥y &1
Hy, D = S a’t) ag Sa(dy)”, H,y,, D= S asa’ls Sa (dy)2+
0 7 o 0 6 0o 0
vy v v v y oy
K, =S asa—ls...ga_l(dy)”, K2n+1(l)— aIBaS \al (dy) an+1
0 0 [} 0 (! 0 0 o

Let us define the path of integration. We shall skirt the critical
points with semi-circles C; with radii r; = |yl-—-ycl|, disposed respect-
ively in the lower and upper half-planes of the complex plane of y (Fig.
2), whilst the remainder of the path is taken along the real axis. Let
ylo be the points of intersection of the real axis with the semicircles
C;. For estimates of the integrals it is sufficient to consider one of
the integrals (0, y,). Let the complex variable y —y (t) on the path of
integration be a function of the real parameter t, the length of arc
along the path of integration, starting from the origin of coordinates.
Then

t=—Y when ¥° <Xy <0
t=—y1°—r1q> when y——aymzrle", nLe<0 (dy/dt:-—iei“’)

Let us estimate the moduli of the integrals. Evidently

t t t

o
Ko [ <Nla {1t (o et j@ i) @2)
since ¢ 0 o
d
!%‘:1’ th=—y" + ary, rlz’u%(i—lL}v])
Moreover :
Vlat|erde < a7ttt (2.3)
0
The last relation is obvious when 0<(t<(9% = —y,°, since in this

interval the quantity |a~!| tk is increasing. If, however, {>>9,, then
the following relation holds:
t

\latjemar = & “““’)+0 Inr|) (2.4)

2
ry
0

which is obtained by expanding the integrand in the neighborhood of the
critical point
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a7t =

wer' 2 r? { ) ‘ (¢ =)

- 1 ¢
‘allzum[i-wl (tcl~t)+ ] (t <91, ter =—yo)

From the relation (2.2) by virtue of (2.3) it follows that

Kol | < (2.5)
In just the same way we obtain
| Kana® | < 5 |0 ot = s (;’;)1. +0(lr)  (26)
Since |a| < 1 and f\a]dt < 1, then for H2n+ 1 ) and Hzn(l) we have
| Hann® | < gy (2.7)
4
Hop | < OS |0 oy e = e TRto(mn) @29

Let us estimate the imaginary parts of the integrals. The expressions
in the integrands are complex only on C;, so that, for example

Im K,,® = Im S irae® ks, o do (2.9)
0

where for k,, _, we can write
@

Fan_y = Kan_1 (31) + S ira7e kg, _o do (2.10)

and k, _ (9, ) are real quantities, the moduli of which are less than
the moduh |K,,_ 4. According to Formla (2.10), it follows from (2.9)
that

an
Him Ky, @ | < D) 707 | Ky || Im J; | (2.11)
i=1
and likewise
|Im K%, < 2 ri | KW |- Im ;) (2.12)
i=1

Similarly
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n

ImHY| < Z, ri|HE ;1. Im ;! (2.13)
2111

‘ImH(zerJrl\ < Z ry’ ]H271——7+1l | Im J; | (2.14)
i=1

where

T @
Ji=ii \ aeie {atere . (a0 eio (dg)i (2.15)
[1] 0

TG

3 al—v gie (dg)i (2.16)

b4
Ijzi] alet® S
0

Ct/‘aG

Expanding the expressions a and a~! in series, it is not difficult to
obtain

ImJ, =0, Im/, =" ’j;:l,s, ImJ, =1m/, = —ar, ;‘;11 + O(r2) (2.17)
Moreover, it is clear that

[Js|=0(r?, |/;]<0), [LI<O(™®)  (=12..) (218

From Formulas (2.17) and the estimates (2.18) we obtain the following
estimates of the series (2.11) - (2.14) as regards their main terms:

Im K., =0(r%), [mEKY., =0() 2.19)
[Im Hy,@ [ =0 (1), [ImHY, | =0(r? '
In what follows we shall need for approximate calculations the formula

Hy0 = K,0H,0 0 (Inr,) + i0 (ry?) (2.20)

which can be obtained, after estimating the modulus and the imaginary
part of the integral

Yt Y
H,W — K,0H,W — 5 ™\ ady dy
0 h

by a method similar to that followed above.

The results which we have obtained may be used for the simplification
of the equation for the eigenvalues (1.24); we retain in it only the
terms of a given order of magnitude. Let us consider the simplest case
of all, when the real part of Equation (1.24) is calculated to an
accuracy O(r,), and the imaginary part to O(r;%). Moreover, here we shall
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assume that a? = CKrl), whilst ® = O(1) + iO(r,), as in the case of the
symmetrical velocity profile {2 1.

Then to the given accuracy we set
Ul

HO =1 - K O 10, Hyo® =\ w?dy

1}

HY=n," KO_ g O (=12 (2.21)

Moreover, the real and imaginary parts of the integral K,(l) are

w

.22

- 1
Alr( ) — =

1
. ]fﬁ,’:: I
Zlil 4

Using these expressions for the calculation of the quantities L,
from the real and imaginary parts of Equation (1.24) respectively, we
finally obtain

atfy '@y, —we' Dy, Zy wy % 2

¢ - (D1rq)2r ’ Zy - “71( (®2r> (223)
where H10 = Hlo(z) - Hlo(l)' Zl = @li + cwl'Kli(l), ®lr and @;; are the
real and imaginary parts of the functions ®;(l =1, 2). In the case of
the symmetrical velocity profile (w,” = — w;”; ®, = @) these formulas
reduce to the formulas presented in [2 ]

aty  w/ =
=g, L= (2.24)

3. As an example of the calculation of the stability of a flow with
asymmetric velocity profile in a channel, let us consider the flow
(Fig. 1)

n oy
w=cos 5 (02>y >y
n+yp=1) (3.1)
Ty - -
w ;cos—f*yz—(v<y§yz)

Such a flow is formed by the inflow of fluid into a channel through
permeable walls with constant velocities vy, and vy, (u01/v02 = — yz/yl)
under the condition that the quantities ”olH/V and ”ozH/V are large com-
pared with unity. The arguments of the Tietjens function are in this case

2 2/, / F N B
a=ythn  a=whs (= (?) c]/aR) (3.2)

Here for the sake of simplicity it is assumed that the slope of the
velocity profile at the critical point is equal to the slope at the cor-
responding wall of the channmel, w,;".~ w;’- (i.e. A; = 0, or e? < 1.
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From Equations (2.23) it follows that

9 _ 1Dy, — ya @y, R’
T T,y
(3.3) PRI
- 228 (]:)17*‘2 (D‘_zi - ychzr2 q)xi 1)
et = 3/11?1,‘2 — Y2 Fgrz |
1
15:10" 7
The system of equations (3.2) - (3.3) de- © {
termines the neutral curve in the plane of |
the parameters a, R. Great practical interest 104 |
attaches to the calculation of the critical ¢ // §
Reynolds number R‘, for which the first onset q° ///
of instability occurs in the flow. An esti- 510 -
mate of the quantity R can be obtained with- ,/// 7,
out constructing the whole of the neutral 4L47 A
curve, provided that in accordance with (3.2) U; 3 5 7
it is assumed approximately that R attains a Fig. 3.

minimum when the quantity ¢, considered as a
function of 2z, is a maximum.

For the symmetric profile (- y; = y; = 1/2) such a calculation gives
R‘ = 2150, If, however, y1=- 0.4, then R. = 2900.

Finally, let us consider the limiting case y; » 0. As follows from the
properties of the Tietjens function, Qi(z) and @r(z) tend to zero as

z > 0. Then as ¥; » 0 we have, for ¢ = Cpax

— Tic

net =0 =058 2z=321, oa?= T, @, =1.50 (3.4)
and
Ye Y2
R, = 1075 m 1 ” (3.5)
For example, R. = 27400 when y; = — 1/9, i.e. the asymmetric flow of

the type considered is strongly stabilized.

The conclusion as to the stabilization of the flow with increase of
the ratio — y,/y; (~ y5/y; > 1) has been verified by the author experi-
mentally. For this purpose a flow was produced in a two-dimensional-
channel model, with a velocity profile conforming to the relation (3.1).
Two opposite walls of the channel were made out of net, whilst the other
two walls and the base of the channel were impermeable. The ratio of the
velocity of inflow of air through the walls was changed by changing the
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resistance of the nets. To minimize external disturbances the air was
exhausted from the channel through a critical section. The beginning of
the transition to the turbulent regime was observed by the onset of
oscillations in the stream. For the measured velocity profile, the values
of R‘ and y2/y1 were determined. The values of the Reynolds number so
obtained are shown in Fig. 3, Here is also displayed the theoretical
curve R‘(yz/yl) computed from Formula (3.5) (which for values of y; close
to — 1/2 satisfactorily approximates the value of R‘ calculated from
Formulas (3.33) without the limiting transition ¥1 > 0). The results of
the measurements confirm the conclusions obtained from theory.

4. The method described above can be used without fundamental changes
to solve the problem of the stability of axial flows in annular channels,
if it is accepted that the magnitude of the internal radius of the
annular channel is not small compared with the width of the channel.

The differential equation for the amplitude of the perturbation of
axisymmetric type in this case has the form

. 3 a2 1 d
(P? —a2)?q = iaR [(w — c) (P* — o) — P2w] ¢ (P2:l—1r7_7d7> (4.1)
=0 =0 when r—rjandr =r, (w (r1) = w (ra) = 0)
The solution of the degenerate equation in this case has the same
form as for the plane problem, except for the fact that in all the

integrals the quantity a must be
(w—o)? (4.2)

r

a —

and the lower limit of integration is r, (r, is the point corresponding
to the maximum velocity in the channel). The integration is carried out
in the complex plane of r, skirting the critical points below or above
according to the sign of w_.* ( > 0 or < 0). The solution of the equation
for ¢, and ¢, is just the same as in the plane case (y being everywhere
replaced by r).

The approximate relations of type (2.23) in this case have the form

’ ’ 2
a2H 1, wy 1@y, — wo'r1 Dy, Zy  wy D% ry 43
= ) Zo = o \e) 7o (4.3)

¢ 1@, r2 D@y, Zs wy \D,,./ e

Here

’

r; (0 r ‘.l’. w
C

o, Kf
Hi=\dr, Zi=@uten o, KO —a % (3) =12 (44

r
Wey

i
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